Multiplicative rule of Schubert classes
نویسنده
چکیده
Let G be a compact connected Lie group and H, the centralizer of a one-parameter subgroup in G. Combining the ideas of Bott-Samelson resolutions of Schubert varieties and the enumerative formula on a twisted product of 2 spheres obtained in [Du2], we obtain a closed formula for multiplying Schubert classes in the flag manifold G/H. 2000 Mathematical Subject Classification: 14N15 (14M10).
منابع مشابه
Algorithm for Multiplying Schubert Classes
Based on the multiplicative rule of Schubert classes obtained in [Du3], we present an algorithm computing the product of two arbitrary Schubert classes in a flag variety G/H, where G is a compact connected Lie group and H ⊂ G is the centralizer of a one-parameter subgroup in G. Since all Schubert classes on G/H constitute an basis for the integral cohomology H∗(G/H), the algorithm gives a metho...
متن کاملTwo Murnaghan-nakayama Rules in Schubert Calculus
The Murnaghan-Nakayama rule expresses the product of a Schur function with a Newton power sum in the basis of Schur functions. We establish a version of the Murnaghan-Nakayama rule for Schubert polynomials and a version for the quantum cohomology ring of the Grassmannian. These rules compute all intersections of Schubert cycles with tautological classes coming from the Chern character. Like the...
متن کاملRestriction Varieties and Geometric Branching Rules
This paper develops a new method for studying the cohomology of orthogonal flag varieties. Restriction varieties are subvarieties of orthogonal flag varieties defined by rank conditions with respect to (not necessarily isotropic) flags. They interpolate between Schubert varieties in orthogonal flag varieties and the restrictions of general Schubert varieties in ordinary flag varieties. We give ...
متن کاملQuantum Cohomology of the Lagrangian Grassmannian
Let V be a symplectic vector space and LG be the Lagrangian Grassmannian which parametrizes maximal isotropic subspaces in V . We give a presentation for the (small) quantum cohomology ring QH∗(LG) and show that its multiplicative structure is determined by the ring of Q̃-polynomials. We formulate a ‘quantum Schubert calculus’ which includes quantum Pieri and Giambelli formulas, as well as algor...
متن کاملQuantum Schubert Polynomials Sergey
where In is the ideal generated by symmetric polynomials in x1, . . . , xn without constant term. Another, geometric, description of the cohomology ring of the flag manifold is based on the decomposition of Fln into Schubert cells. These are even-dimensional cells indexed by the elements w of the symmetric group Sn . The corresponding cohomology classes σw , called Schubert classes, form an add...
متن کامل